Elliptic Curves Backpaper Examination

May 32023

This exam is of $\mathbf{5 0}$ marks and is $\mathbf{3}$ hours long. Please read all the questions carefully. Please feel free to use whatever theorems you have learned in class after stating them clearly. You may use the book 'The Arithmetic of Elliptic Curves' by Joseph Silverman.

Please copy the following sentence on the first page of your answer sheet and write your name and signature.

I have not used any unfair or illegal means to answer any of the questions in this exam.

1. Consider the curve over \mathbb{Q} given by

$$
C: X^{4}+16 Y^{4}=64 Z^{4}
$$

a. Is it a smooth curve? Prove or disprove your answer.
b. Show that the map π given by

$$
\begin{equation*}
\pi(X, Y, Z) \rightarrow\left[X^{4}, 16 Y^{4}, 256 Z^{4}\right] \tag{3}
\end{equation*}
$$

defines a map from C to \mathbb{P}^{1}
c. Compute the degree of the map π.
d. What are the ramification points of the map?
e. Use the Riemann-Hurwitz theorem to compute its genus.
2. Let E and E^{\prime} be elliptic curves over the finite field \mathbb{F}_{q}.
a. Show that if E is isogenous to E^{\prime} then

$$
\begin{equation*}
\# E\left(F_{q}\right)=\# E^{\prime}\left(F_{q}\right) \tag{5}
\end{equation*}
$$

b. Define the Zeta function $Z(E / \mathbb{F}) q, T)$ and show that if E is isogenous to E^{\prime} then

$$
\begin{equation*}
Z\left(E / \mathbb{F}_{q}, T\right)=Z\left(E^{\prime} / \mathbb{F}_{q}, T\right) \tag{5}
\end{equation*}
$$

3 Consider the singular curve

$$
\begin{equation*}
C: Y^{2}=X^{2}+X \tag{5}
\end{equation*}
$$

a. Count the number of points of C over \mathbb{F}_{7}.
b. Compute the Zeta function of C over \mathbb{F}_{7}.
4. Let \wp be the Weierstrass \wp-function and σ be the Weierstrass σ-function assocated with an elliptic curve $E=\mathbb{C} / \Lambda$ over \mathbb{C}. Define the Weierstrass Zeta function by

$$
\zeta(z)=\frac{1}{z}+\sum_{w \in \Lambda, w \neq 0}\left(\frac{1}{(z-w)}+\frac{1}{w}+\frac{z}{w^{2}}\right)
$$

a. Show

$$
\begin{equation*}
\frac{d}{d z} \log (\sigma(z))=\zeta(z) \text { and } \frac{d}{d z} \zeta(z)=-\wp(z) \tag{3}
\end{equation*}
$$

b. Show that

$$
\begin{equation*}
\zeta(-z)=-\zeta(z) \tag{3}
\end{equation*}
$$

c. Show that for all $w \in \Lambda$ there is a constant $\eta(w)$ such that

$$
\begin{equation*}
\zeta(z+w)=\zeta(z)+\eta(w) \tag{4}
\end{equation*}
$$

