Elliptic Curves Backpaper Examination

May 3 2023

This exam is of **50 marks** and is **3 hours long**. Please **read all the questions carefully**. Please feel free to use whatever theorems you have learned in class after stating them clearly. You may use the book '**The Arithmetic of Elliptic Curves' by Joseph Silverman**.

Please copy the following sentence on the first page of your answer sheet and write your name and signature.

I have not used any unfair or illegal means to answer any of the questions in this exam.

1. Consider the curve over \mathbb{Q} given by

$$C: X^4 + 16Y^4 = 64Z^4$$

a.	Is it a	a smooth curve?	Prove o	r disprove your answer.	(4)
	~1				

b. Show that the map π given by

 $\pi(X, Y, Z) \to [X^4, 16Y^4, 256Z^4]$

defines a map from C to \mathbb{P}^1			
c. Compute the degree of the map π .	(4)		
d. What are the ramification points of the map?	(4)		
e. Use the Riemann-Hurwitz theorem to compute its genus.	(5)		

- 2. Let E and E' be elliptic curves over the finite field \mathbb{F}_q .
- a. Show that if E is isogenous to E' then

$$#E(F_q) = #E'(F_q)$$

b. Define the Zeta function $Z(E/\mathbb{F})q, T$ and show that if E is isogenous to E' then (5)

$$Z(E/\mathbb{F}_q,T) = Z(E'/\mathbb{F}_q,T)$$

3 Consider the singular curve

$$C: Y^2 = X^2 + X$$

- a. Count the number of points of C over \mathbb{F}_7 . (5)
- b. Compute the Zeta function of C over \mathbb{F}_7 .

4. Let \wp be the Weierstrass \wp -function and σ be the Weierstrass σ -function assocated with an elliptic curve $E = \mathbb{C}/\Lambda$ over \mathbb{C} . Define the Weierstrass Zeta function by

$$\zeta(z) = \frac{1}{z} + \sum_{w \in \Lambda, w \neq 0} \left(\frac{1}{(z-w)} + \frac{1}{w} + \frac{z}{w^2} \right)$$
(3)

a. Show

$$\frac{d}{dz}\log(\sigma(z)) = \zeta(z)$$
 and $\frac{d}{dz}\zeta(z) = -\wp(z)$

b. Show that

 $\zeta(-z) = -\zeta(z)$

c. Show that for all $w \in \Lambda$ there is a constant $\eta(w)$ such that

(4)

(3)

(5)

(5)

$$\zeta(z+w) = \zeta(z) + \eta(w)$$